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Abstract

The present problem is the deformation of micropolar thermoelastic solids with cubic symmetry under the influence of
various sources acting on the plane surface. Analytic expressions for displacement components, microrotation, force stress,
couple stress, and temperature distribution are obtained in the physical domain for Lord–Shulman (L–S) and Green–
Lindsay (G–L) theories of thermoelasticity by applying integral transforms. A numerical inversion technique has been
applied to obtain the solution in the physical domain. The numerical results are presented graphically for a particular
model.
� 2005 Published by Elsevier Ltd.
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1. Introduction

The classical theory of heat conduction predicts infinite speed of heat transportation, if a material that con-
ducts heat is subjected to a thermal disturbance, which contradicts the physical facts. Lord and Shulman
(1967) incorporated a flux rate term into the Fouriers law of heat conduction and formulated a generalized
theory admitting finite speed for thermal signals. Green and Lindsay (1972) have developed a temperature-
rate-dependent thermoelasticity by including temperature rate among the constitutive variables, which does
not violate the classical Fouriers law of heat conduction when the body under consideration has a center
of symmetry, and this theory also predicts a finite speed of heat propagation. Green and Naghdi (1991) estab-
lished a new thermomechanical theory of deformable media that uses a general entropy balance. The general-
ized thermoelasticity theories are supposed to be more realistic than the conventional theory in dealing with
practical problems involving very large heat fluxes and/or short time intervals, such as those occurring in laser
units and energy channels.
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The classical theory of elasticity is inadequate to represent the behavior of some modern engineering struc-
tures such as polycrystalline materials and materials with fibrous or coarse grain. The study of these materials
requires incorporation of theory of oriented media. ‘‘Micropolar elasticity’’, termed by Eringen (1966), is used
to describe the deformation of elastic media with oriented particles. A micropolar continuum is a collection of
interconnected particles in the form of small rigid bodies undergoing both translational and rotational
motions. The force at a point of a surface element of bodies of these materials is completely characterized
by a stress vector and a couple stress vector at that point.

Following various methods, the elastic fields of various loadings, inclusion and inhomogeneity problems,
and interaction energy of point defects and dislocation arrangement have been discussed extensively in the
past. Generally all materials have elastic anisotropic properties, which means that the mechanical behavior
of an engineering material is characterized by the direction dependence. However, the three-dimensional study
of an anisotropic material is much more complicated than the isotropic one, due to the large number of elastic
constants involved in the calculation. In recent years the elastodynamic response of anisotropic continua has
received the attention of several researchers. In particular, transversely isotropic and orthotropic materials,
which may not be distinguished from each other in plane strain and plane stress, have been more regularly
studied. Kumar and Choudhary (2002a,b, 2003) discussed different types of problems in an orthotropic micro-
polar continua.

A wide class of crystals such as W, Si, Cu, Ni, Fe, Au, and Al, which are frequently used substances, belong
to cubic materials. The cubic materials have nine planes of symmetry whose normals are on the three coordi-
nate axes and on the coordinate planes making an angle of p/4 with the coordinate axes. With the chosen coor-
dinate system along the crystalline directions, the mechanical behavior of a micropolar cubic crystal can be
characterized by four independent elastic constants.

To understand the crystal elasticity of a cubic material, Chung and Buessem (1967) presented a convenient
method to describe the degree of the elasticity anisotropy in a given cubic crystal. Later Lie and Koehler
(1968) used a Fourier expansion scheme to calculate the stress fields caused by a unit force in a cubic crystal.
Steeds (1973) gave a complete discussion of the displacements, stresses, and energy factors of the dislocations
for two-dimensional anisotropic materials. Boulanger and Hayes (2000) investigated inhomogeneous plane
waves in cubic elastic materials. Bertram et al. (2000) discussed generation of discrete isotropic orientation
distributions for linear elastic cubic crystals. Kobayashi and Giga (2001) investigated anisotropy and curva-
ture effects for growing crystals. Domanski and Jablonski (2001) studied resonances of nonlinear elastic waves
in cubic crystal. Destrade (2001) considered the explicit secular equation for surface acoustic waves in mono-
clinic elastic crystals. Zhou and Ogawa (2002) investigated elastic solutions for a solid rotating disk with cubic
anisotropy. Minagawa et al. (1981) discussed the propagation of plane harmonic waves in a cubic micropolar
medium. Recently Kumar and Rani (2003) studied time-harmonic sources in a thermally conducting cubic
crystal. However, no attempt has been made to study source problems in micropolar thermoelastic solids with
cubic symmetry.

The results of the problem may be applied to a wide class of geophysical problems involving temperature
change. The physical applications are encountered in the context of problems such as ground explosions and
oil industries. This problem is also useful in the field of geomechanics, where the interest is in various phenom-
enon occurring in earthquakes and measurement of displacements, stresses, and temperature field due to the
presence of certain sources. The present investigation seeks to determine the components of displacement,
microrotation, and stress in a micropolar thermoelastic medium with cubic symmetry due to mechanical/ther-
mal sources. The solution is obtained by introducing potential functions after employing an integral transfor-
mation technique. The integral transforms are inverted using a numerical method.

2. Problem formulation

We consider a homogeneous, micropolar thermoelastic solid half-space with cubic symmetry. We consider
a rectangular coordinate system (x,y,z) having origin on the surface y = 0 and y-axis pointing vertically into
the medium. A normal force/thermal source is assumed to be acting at the origin of the rectangular Cartesian
coordinates. If we restrict our analysis to plane strain parallel to the xy-plane with displacement vector
u = (u1,u2,0) and microrotation vector / = (0,0,/3) then the field equations and constitutive relations for a
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micropolar thermoelastic solid with cubic symmetry in the absence of body forces, body couples, and heat
sources can be written following the equations given by Minagawa et al. (1981), Lord and Shulman (1967),
and Green and Lindsay (1972) as
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where t22, t21, m23 are the components of normal force stress, tangential force stress, and tangential couple
stress, respectively. A1, A2, A3, A4, and B3 are characteristic constants of the material; m = (A1 + 2A2)aT; aT

is the coefficient of linear expansion; q is the density and j is the microinertia; K* is the coefficient of thermal
conductivity; C* is the specific heat at constant strain; and t0 and t1 are the thermal relaxation times. dik

(i = 1,2) is the Kronecker delta. For Lord–Shulman (L–S) theory t1 = 0 and k = 1, and for Green–Lindsay
(G–L) theory t1 > 0, k = 2, and r2 ¼ o2

ox2 þ o2

oy2.
Introducing dimensionless variables defined by
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where x ¼ qC�c2
1=K�, e ¼ m2T 0=qxK�, and c2

1 ¼ A1

q , into Eqs. (1)–(4) we obtain (after dropping the primes)
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Introducing potential functions defined by
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into Eqs. (9)–(12), where q(x,y, t) and W(x,y, t) are scalar potential functions, we obtain
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Applying the Laplace transform with respect to time t defined by
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to Eqs. (14)–(17) and eliminating eT and ~/3 from the resulting expressions, we get
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The roots of Eqs. (21) and (22) are given by
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The solutions of Eqs. (21) and (22) satisfying radiation conditions are given by
~q ¼ D1 expð�q1yÞ þ D2 expð�q2yÞ; ð25ÞeW ¼ D3 expð�q3yÞ þ D4 expð�q4yÞ; ð26ÞeT ¼ a�1D1 expð�q1yÞ þ a�2D2 expð�q2yÞ; ð27Þ
~/3 ¼ a�3D3 expð�q3yÞ þ a�4D4 expð�q4yÞ; ð28Þ
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3. Boundary conditions

3.1. Mechanical force on the surface of a half-space

The boundary conditions on the surface y = 0 are
t22 ¼ �F W1ðxÞdðtÞ; t21 ¼ 0; m23 ¼ 0;
oT
oy
þ hT ¼ 0; ð30Þ
where d(t) is the Dirac delta function, W1(x) specify the vertical traction distribution function along the x-axis,
and h is the heat transfer coefficient, where h!1 for an isothermal boundary and h! 0 for an insulated
boundary.

Applying Laplace and Fourier transforms defined by (19) and (20) to the boundary conditions (30) and
using (5)–(8), (13) and (25)–(28), we get the expressions for displacement components, microrotation, force
stress, couple stress, and temperature distribution for a micropolar thermoelastic solid with cubic symmetry as
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3.1.1. Concentrated force

To determine displacements, microrotation, stresses, and temperature due to a concentrated force described
by the Dirac delta function, ~W1ðnÞ ¼ dðxÞ must be used with
~W1ðnÞ ¼ 1. ð39Þ
3.1.2. Uniformly distributed force

The solution due to uniformly distributed force applied on the half-space is obtained by setting
W1ðxÞ ¼
1 if jxj 6 a;

0 if jxj > a

�

in Eqs. (30). The Fourier transform, with respect to the pair (x,n) for the case of a uniform strip load of unit
amplitude and width 2a applied at the origin of the coordinate system (x = y = 0) in dimensionless form after
suppressing the primes, becomes
~W1ðnÞ ¼ 2 sin
nc1a
x

� �� �
n

�
; n 6¼ 0. ð40Þ
3.1.3. Linearly distributed force

The solution due to a linearly distributed force is obtained by substituting
W1ðxÞ ¼
1� jxja if jxj 6 a;

0 if jxj > a;

"

in Eqs. (30), where 2a is the width of the strip load. The Fourier transform in the case of a linearly distributed
force applied at the origin on the system in dimensionless form is
~W1ðnÞ ¼
2 1� cos nc1a=xð Þ½ �

n2c1a=x
. ð41Þ
The expressions for displacements, stresses, and temperature can be obtained for a concentrated, uniformly
and linearly distributed force by replacing ~W1ðnÞ from (39)–(41), respectively, in (31)–(37).

3.2. Thermoelastic interactions due to a thermal source

The boundary conditions in this case are
t22 ¼ 0; t21 ¼ 0; m23 ¼ 0;
oT
oy
¼ gðxÞdðtÞ; for temperature gradient boundary

or

T ðx; y ¼ 0Þ ¼ rðx; tÞ; for temperature input boundary,

ð42Þ
where r(x, t) = g(x)d(t).
Applying Laplace and Fourier transforms defined by (19) and (20), we get
rðn; pÞ ¼ ~gðnÞ.

The expressions for displacement, force stress, tangential couple stress, and temperature distribution are given
by Eqs. (31)–(37) with Dt replaced by D0

t (t = 1,2,3,4) in Eqs. (38), where
D0
1;2 ¼ �H~gðnÞ½�a�3q3ðr2;1s4 � r4s2;1Þ þ a�4q4ðr2;1s3 � r3s2;1Þ�;

D0
3;4 ¼ �H~gðnÞa�4;3q4;3ðr1s2 � r2s1Þ; ð43Þ
where H ¼ � c1

xT 0
for temperature gradient boundary and H ¼ 1

T 0
for temperature input boundary.
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3.2.1. Thermal source

In this case
gðxÞ ¼ dðxÞ

with
~gðnÞ ¼ 1. ð44Þ
3.2.2. Uniformly distributed thermal source

In this case�

gðxÞ ¼

1 if jxj 6 a;

0 if jxj > a;

with � �� � �
~gðnÞ ¼ 2 sin
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x

n ; n 6¼ 0. ð45Þ
3.2.3. Linearly distributed thermal source

In this case
gðxÞ ¼ 1� jxj
a

if jxj 6 a;

0 if jxj > a;

24

with
~gðnÞ ¼ 2 1� cos nc1a=xð Þ½ �
n2c1a=x

. ð46Þ
The expressions for displacements, microrotation, stresses, and temperature can be obtained for a thermal
point source and for uniformly and linearly distributed thermal sources by replacing ~gðnÞ from (44)–(46),
respectively, in (31)–(37).

4. Particular cases

4.1. Neglecting micropolarity effects (i.e., B3 = j = 0), we obtain the corresponding expressions for displace-
ments, stresses, and temperature distribution as
~u1 ¼ �
1

D�
½infD�1 expð�q1yÞ þ D�2 expð�q2yÞg þ q3D

�
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4.1.1. The expressions for displacements, stresses, and temperature can be obtained for a concentrated, uni-
formly and linearly distributed force by replacing ~W1ðnÞ from (39)–(41) respectively in (47)–(51).

4.1.2. The expressions for displacement, force stress, and temperature distribution for thermal sources are
given by Eqs. (47)–(51) with D�N replaced by D�0N (N = 1,2,3) in Eq. (52), where
D�01 ¼ H~gðnÞðr2s�3 � r�3s2Þ; D�02 ¼ �H~gðnÞðr1s�3 � r�3s1Þ; D�03 ¼ H~gðnÞðr1s2 � r2s1Þ. ð53Þ
The expressions for displacements, stresses, and temperature distribution can be obtained for a thermal point
source and for uniformly and linearly distributed thermal sources by replacing ~gðnÞ from (44)–(46), respec-
tively, in (47)–(51) and using (53).

4.2. Neglecting thermal effects the expressions for displacements, microrotation, and stresses are obtained
as
~u1 ¼ �
1

D��
½inD��1 expð�q01yÞ þ q3D

��
3 expð�q3yÞ þ q4D

��
4 expð�q4yÞ�; ð54Þ
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��
3 expð�q3yÞ þ a�4q4D

��
4 expð�q4yÞ�; ð59Þ
where
D�� ¼ �a�3q3ðr�1s4 � r4s�1Þ þ a�4q4ðr�1s3 � r3s�1Þ;
D��1 ¼ �F ~W1ðnÞða�4q4s3 � a�3q3s4Þ; D��2;3 ¼ �F ~W1ðnÞs�1a�4;3q4;3;

s�1 ¼ inq01
ðA3 þ A4Þ

qc2
1

; r�1 ¼ �
n2A2

qc2
1

þ q021 ; q021 ¼
n2 þ p2

a11

.

ð60Þ
Again the expressions for displacements, microrotation, force stress and couple stress can be obtained for a
concentrated, uniformly and linearly distributed force by replacing ~WðnÞ from (39)–(41), respectively, in
(54)–(59).

4.2.1. Sub case 1. If h! 0, (31)–(37) and (47)–(51) yield the expressions for displacements, microrotation,
stresses, and temperature distribution for an insulated boundary. In this case H = �c1/xT0 in Eq. (43).

4.2.2. Sub case 1. If h!1, (31)–(37) and (47)–(51) yield the expressions for displacements, microrotation,
stresses, and temperature distribution for an isothermal boundary. In this case H = 1/T0 in Eq. (43).

4.2.3. Special case 1. By putting k = 1 and t1 = 0 in (31)–(37) and (47)–(51), we obtain the displacements,
microrotation, stresses, and temperature distribution for L–S theory (Lord and Shulman, 1967).

4.2.4. Special case 2. For G–L theory (Green and Lindsay, 1972), we obtain the corresponding expressions
for displacements, microrotation, stresses, and temperature distribution by substituting k = 2 into (31)–(37)
and (47)–(51).

4.3. Micropolar thermoelastic solid

4.3.1. Taking
A1 ¼ kþ 2lþ K; A2 ¼ k; A3 ¼ lþ K; A4 ¼ l; B3 ¼ c ð61Þ



R. Kumar, P. Ailawalia / International Journal of Solids and Structures 43 (2006) 2761–2798 2769
in Eqs. (31)–(37), (47)–(51) and (54)–(59) with (39)–(41) we obtain the corresponding expressions in a micro-
polar thermoelastic isotropic medium, thermoelastic isotropic medium, and micropolar isotropic medium for
concentrated, uniformly distributed, and linearly distributed force, respectively.

4.3.2. Using Eqs. (61) in Eqs. (31)–(37) with Dt replaced by D0
t (t = 1,2,3,4) from Eq. (43) and using Eqs.

(44)–(46) we obtain the corresponding expressions for thermal source, uniformly thermal source, and linearly
distributed thermal source, respectively.

5. Inversion of the transformed

The transformed displacements and stresses are functions of y, the parameters of Laplace and Fourier
transforms p and n, respectively, and hence are of the form ~f ðn; y; pÞ. To get the function in the physical
domain, first we invert the Fourier transform using
�f ðx; y; pÞ ¼ 1

2p

Z 1

�1
e�inx~f ðn; y; pÞdn ¼ 1

p

Z 1

0

fcosðnxÞfe � i sinðnxÞfogdn; ð62Þ
where fe and fo, are even and odd parts of the function ~f ðn; y; pÞ, respectively. Thus, expressions (62) give us
the transform �f ðx; y; pÞ of the function f ðx; y; tÞ. Now, for the fixed values of n, x, and y, the �f ðx; y; pÞ in the
expression (40) can be considered as the Laplace transform �gðpÞ of some function g(t). Following Honig and
Hirdes (1984), the Laplace transformed function �gðpÞ can be converted as given below.

The function g(t) can be obtained by using
gðtÞ ¼ 1

2pi

Z cþi1

c�i1
ept�gðpÞdp; ð63Þ
where C is an arbitrary real number greater than all the real parts of the singularities of �gðpÞ. Taking
p = C + iy, we get
gðtÞ ¼ eCt

2p

Z 1

�1
eity�gðC þ iyÞdy. ð64Þ
Now, taking e�Ctg(t) as h(t) and expanding it as Fourier series in [0, 2L], we obtain the approximate formula
gðtÞ ¼ g1ðtÞ þ ED;
where
g1ðtÞ ¼
C0

2
þ
X1
k¼1

Ck; 0 6 t 6 2L;

Ck ¼
ect

L
R e

ikpt
L �g C þ ikp

L

� �� �
; ð65Þ
and ED is the discretization error and can be made arbitrary small by choosing C large enough. The value of C

and L are chosen according to the criteria outlined by Honig and Hirdes (1984).
Since the infinite series in Eq. (65) can be summed up only to a finite number of N terms, the approximate

value of g(t) becomes
gN ðtÞ ¼
C0

2
þ
XN

k¼1

Ck; 0 6 t 6 2L. ð66Þ
Now, we introduce a truncation error EI that must be added to the discretization error to produce the total
approximation error in evaluating g(t) using the above formula. Two methods are used to reduce the total
error. The discretization error is reduced using the ‘‘Korrecktur’’-method, Honig and Hirdes (1984), and then
the ‘‘e-algorithm’’ is used to reduce the truncation error and hence to accelerate the convergence.

The ‘‘Korrecktur’’-method formula to evaluate the function g(t) is
gðtÞ ¼ g1ðtÞ � e�2CLg1ð2Lþ tÞ þ ED0 ; ð67Þ
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where
jED0 j � jEDj. ð68Þ

Thus, the approximate value of g(t) becomes
gNk
ðtÞ ¼ gN ðtÞ � e�2CLgN 0 ð2Lþ tÞ; ð69Þ
where, N 0 is an integer such that N 0 < N.
We shall now describe the e-algorithm that is used to accelerate the convergence of the series in Eq. (66). Let

N be a natural number and Sm ¼
Pm

k¼1Ck be the sequence of partial sums of Eq. (66). We define the e-sequence
by
e0;m ¼ 0; e1;m ¼ Sm;

enþ1;m ¼ en�1;mþ1 þ
1

en;mþ1 � en;m
; n;m ¼ 1; 2; 3; . . . .
It can be shown (Honig and Hirdes, 1984) that the sequence e1,1, e3,1, . . . , eN,1 converges to g(t) + ED � C0/2
faster than the sequence of partial Sm, m = 1,2,3. . .. The actual procedure to invert the Laplace transform
reduces to the study of Eq. (67) together with the e-algorithm.

The last step is to evaluate the integral in Eq. (61). The method for evaluating this integral by Press et al.
(1986) which involves the use of Rhomberg’s integration with adaptive step size. This, also uses the results
from successive refinement of the extended trapezoidal rule followed by extrapolation of the results to the limit
when the step size tends to zero.

6. Numerical results and discussion

For numerical computations, we take the values of relevant parameters for micropolar cubic crystals as
A1 ¼ 19:6� 1011 dyn=cm2; A3 ¼ 5:6� 1011 dyn=cm2; A2 ¼ 11:7� 1011 dyn=cm2;

A4 ¼ 4:3� 1011 dyn=cm2; B3 ¼ 0:98� 10�4 dyn.
For comparison with micropolar isotropic solids, following Eringen (1984) and Dhaliwal and Singh (1980), we
take the values of relevant parameters for the case of a magnesium crystal-like material as
q ¼ 1:74 gm=cm3; k ¼ 9:4� 1011 dyn=cm2; l ¼ 4:0� 1011 dyn=cm2;

K ¼ 1:0� 1011 dyn=cm2; c ¼ 0:779� 10�4 dyn; j ¼ 0:2� 10�15 cm2;

C� ¼ 0:104� 107 cal=gm 	C; m ¼ 0:0268� 109 dyn=cm2 	C; T 0 ¼ 23 	C;

K� ¼ 1:7 J=s cm 	C; t0 ¼ 6:131� 10�13 s; t1 ¼ 8:765� 10�13 s.
The values of normal displacement u2, normal force stress t22, tangential couple stress m23, and temperature
distribution T for a micropolar thermoelastic solid with cubic symmetry (MTECC), micropolar thermoelastic
isotropic solid (MTEIS), thermoelastic solid with cubic symmetry (TECC), and thermoelastic isotropic solid
(TEIS) have been studied for normal force/thermal source and insulated boundary at t = 0.1 and t = 0.25. The
variations of these components with distance x have been shown by (a) solid lines (——) for MTECC and
dashed lines (- - - -) for MTEIS for L–S and G–L theories, respectively, (b) solid lines with centered symbols
(·—·—·) for MTECC and dashed lines with centered symbols (·- - -·- - -·) for MITES for L–S and G–L the-
ories, respectively, (c) solid lines with centered symbols (	—	—	) for TECC and dashed lines with centered
symbols (	- - -	- - -	) for TEIS for L–S and G–L theories, respectively. These variations are shown in Figs.
1–48. The comparison between micropolar thermoelastic cubic crystal and micropolar thermoelastic isotropic
solid is shown. All the results are for one value of dimensionless width a = 1.0. The computations are carried
out for y = 1.0 in the range 0 6 x 6 10.0.



Fig. 1. Variation of normal displacement u2 with distance x. (Concentrated normal force; insulated boundary.)

Fig. 2. Variation of normal force stress t22 with distance x. (Concentrated normal force; insulated boundary.)
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Fig. 3. Variation of tangential couple stress m23 with distance x. (Concentrated normal force; insulated boundary.)

Fig. 4. Variation of temperature distribution T with distance x. (Concentrated normal force; insulated boundary.)
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Fig. 5. Variation of normal displacement u2 with distance x. (Uniformly distributed normal force; insulated boundary.)

Fig. 6. Variation of normal force stress t22 with distance x. (Uniformly distributed normal force; insulated boundary.)
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Fig. 7. Variation of tangential couple stress m23 with distance x. (Uniformly distributed normal force; insulated boundary.)

Fig. 8. Variation of temperature distribution T with distance x. (Uniformly distributed normal force; insulated boundary.)
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Fig. 9. Variation of normal displacement u2 with distance x. (Linearly distributed normal force; insulated boundary.)

Fig. 10. Variation of normal force stress t22 with distance x. (Linearly distributed normal force; insulated boundary.)

R. Kumar, P. Ailawalia / International Journal of Solids and Structures 43 (2006) 2761–2798 2775



Fig. 11. Variation of tangential couple stress m23 with distance x. (Linearly distributed normal force; insulated boundary.)

Fig. 12. Variation of temperature distribution T with distance x. (Linearly distributed normal force; insulated boundary.)
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Fig. 13. Variation of normal displacement u2 with distance x. (Concentrated thermal source; insulated boundary.)

Fig. 14. Variation of normal force stress t22 with distance x. (Concentrated thermal source; insulated boundary.)

R. Kumar, P. Ailawalia / International Journal of Solids and Structures 43 (2006) 2761–2798 2777



Fig. 15. Variation of tangential couple stress m23 with distance x. (Concentrated thermal source; insulated boundary.)

Fig. 16. Variation of temperature distribution T with distance x. (Concentrated thermal source; insulated boundary.)
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Fig. 17. Variation of normal displacement u2 with distance x. (Uniformly distributed thermal source; insulated boundary.)

Fig. 18. Variation of normal force stress t22 with distance x. (Uniformly distributed thermal source; insulated boundary.)
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Fig. 19. Variation of tangential couple stress m23 with distance x. (Uniformly distributed thermal source; insulated boundary.)

Fig. 20. Variation of temperature distribution T with distance x. (Uniformly distributed thermal source; insulated boundary.)
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Fig. 21. Variation of normal displacement u2 with distance x. (Linearly distributed thermal source; insulated boundary.)

Fig. 22. Variation of normal force stress t22 with distance x. (Linearly distributed thermal source; insulated boundary.)
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Fig. 23. Variation of tangential couple stress m23 with distance x. (Linearly distributed thermal source; insulated boundary.)

Fig. 24. Variation of temperature distribution T with distance x. (Linearly distributed thermal source; insulated boundary.)
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Fig. 25. Variation of normal displacement u2 with distance x at t = 0.25. (Concentrate normal force; insulated boundary.)

Fig. 26. Variation of normal force stress t22 with distance x at t = 0.25. (Concentrate normal force; insulated boundary.)
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Fig. 27. Variation of tangential couple stress m23 with distance x at t = 0.25. (Concentrate normal force; insulated boundary.)

Fig. 28. Variation of temperature distribution T with distance x at t = 0.25. (Concentrate normal force; insulated boundary.)
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Fig. 29. Variation of normal displacement u2 with distance x at t = 0.25. (Uniformly distributed force; insulated boundary.)

Fig. 30. Variation of normal force stress t22 with distance x at t = 0.25. (Uniformly distributed force; insulated boundary.)
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Fig. 31. Variation of tangential couple stress m23 with distance x at t = 0.25. (Uniformly distributed force; insulated boundary.)

Fig. 32. Variation of temperature distribution T with distance x at t = 0.25. (Uniformly distributed force; insulated boundary.)
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Fig. 33. Variation of normal displacement u2 with distance x at t = 0.25. (Linearly distributed force; insulated boundary.)

Fig. 34. Variation of normal force stress t22 with distance x at t = 0.25. (Linearly distributed force; insulated boundary.)
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Fig. 35. Variation of tangential couple stress m23 with distance x at t = 0.25. (Linearly distributed force; insulated boundary.)

Fig. 36. Variation of temperature distribution T with distance x at t = 0.25. (Linearly distributed force; insulated boundary.)
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Fig. 37. Variation of normal displacement u2 with distance x at t = 0.25. (Concentrated thermal source; insulated boundary.)

Fig. 38. Variation of normal force stress t22 with distance x at t = 0.25. (Concentrated thermal source; insulated boundary.)
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Fig. 39. Variation of tangential couple stress m23 with distance x at t = 0.25. (Concentrated thermal source; insulated boundary.)

Fig. 40. Variation of temperature distribution T with distance x at t = 0.25. (Concentrated thermal source; insulated boundary.)
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Fig. 41. Variation of normal displacement u2 with distance x at t = 0.25. (Uniformly distributed thermal source; insulated boundary.)

Fig. 42. Variation of normal force stress t22 with distance x at t = 0.25. (Uniformly distributed thermal source; insulated boundary.)
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Fig. 43. Variation of tangential couple stress m23 with distance x at t = 0.25. (Uniformly distributed thermal source; insulated boundary.)

Fig. 44. Variation of temperature distribution T with distance x at t = 0.25. (Uniformly distributed thermal source; insulated boundary.)
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Fig. 45. Variation of normal displacement u2 with distance x at t = 0.25. (Linearly distributed thermal source; insulated boundary.)

Fig. 46. Variation of normal force stress t22 with distance x at t = 0.25. (Linearly distributed thermal source; insulated boundary.)
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Fig. 47. Variation of tangential couple stress m23 with distance x at t = 0.25. (Linearly distributed thermal source; insulated boundary.)

Fig. 48. Variation of temperature distribution T with distance x at t = 0.25. (Linearly distributed thermal source; insulated boundary.)
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7. Discussions for various cases

7.1. Mechanical sources at t = 0.1

7.1.1. Concentrated forced

The values of normal displacement for MTECC and MTEIS are very close to each other (separately) for L–
S and G–L theories. Also, these values lie in a very short range. The variations of normal displacement for the
classical theory of thermoelasticity are more oscillatory. The values for TECC increase sharply and then oscil-
lates with increase in horizontal distance x. These variations of normal displacement are shown in Fig. 1. The
variations of normal force stress for micropolar theory of thermoelasticity are similar in nature to the varia-
tions of normal displacement. Also, the variations for classical theory of thermoelasticity are more oscillatory,
but unlike the variations obtained for normal displacement, the values of normal force stress for both TECC
and TEIS first decreases and then rises sharply to oscillate with increase in horizontal distance. These varia-
tions of normal force stress are shown in Fig. 2.

It is observed from Fig. 3 that very close to the point of application of source, the value of tangential couple
stress is more for MTECC in comparison to the value for MTEIS. For any solid, the values of tangential cou-
ple stress for L–S and G–L theories are quite close to each other. It is interesting to note that the values of
temperature distribution for G–L theory lie in a very short range for both the theories in comparison to
the values for L–S theory. These variations of temperature distribution for both the theories have been shown
in Fig. 4.

7.1.2. Uniformly distributed force

The variations of all the quantities of the solid for the micropolar theory of thermoelasticity are similar in
nature to the variations obtained in case of concentrated normal force with difference in magnitudes. How-
ever, in the case of the classical theory of thermoelasticity, the variations of the quantities are less oscillatory
in comparison to the variations in the previous case. These variations of normal displacement, normal force
stress, tangential couple stress and temperature distribution are shown in Figs. 5–8, respectively.

7.1.3. Linearly distributed force

The values of normal displacement and normal force stress of solid lie in a short range for the micropolar
theory of thermoelasticity. These values are very close for both L–S and G–L theories. But the variations for
classical theory of thermoelasticity are oscillatory to a large extent as compared to the oscillations for micro-
polar theory. These variations of normal displacement and normal force stress are shown in Figs. 9 and 10,
respectively. The variations of tangential couple stress for both MTECC and MTEIS are similar in nature with
different magnitude. Also, these variations are similar to the variations obtained in the case of concentrated
normal force. These variations of tangential couple stress are shown in Fig. 11.

It is observed from Fig. l2 that the values of temperature distribution for both micropolar and classical the-
ories of thermoelasticity increase in the range 0.0 6 x 6 2.0 and then decrease sharply with horizontal distance
x. Since the values of temperature distribution are greater for L–S theory than for G–L theory, this decrease
appears to be sharper for L–S theory, i.e., the values of temperature distribution for G–L theory lie in a short
range.

7.2. Thermal sources at t = 0.1

7.2.1. Concentrated normal source

It is interesting to observe from Figs. 13 and 14 that the variations of normal displacement and
normal force stress, respectively, are opposite in nature. Also the difference between the values of these
quantities for L–S and G–L theories are very significant in comparison to the values obtained in case of
mechanical sources where the difference is less significant. The variations obtained in this case are more uni-
form in nature. The values of tangential couple stress for L–S theory lie in a short range and hence are less
oscillatory than the variations for G–L theory. These variations for tangential couple stress are shown in
Fig. 15.
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The variations of temperature distribution for both the theories increases initially in the range 0.0 6 x 6 2.0
and then oscillates with horizontal distance x. These variations are smooth in nature for micropolar theory of
thermoelasticity. The variations of temperature distribution in case of concentrated thermal source are shown
in Fig. 16.
7.2.2. Uniformly distributed and linearly distributed thermal source

At any point in the range 0.0 6 x 6 10.0 there is vast difference between the values of normal displacement,
normal force stress and tangential couple stress for L–S and G–L theories in case of micropolar theory of ther-
moelasticity which is not the case in classical theory of thermoelasticity. Hence microrotation plays a vital role
in the study of deformation of a body. These variations of normal displacement, normal force stress, and tan-
gential couple stress for micropolar and classical theories of thermoelasticity are shown in Figs. 17–22, respec-
tively, for uniformly distributed and linearly distributed thermal sources.

The discussions given above are, however, opposite in nature when we observe the results for temperature
distribution. The values for L–S and G–L theories are close to each other for a particular solid. These vari-
ations of temperature distribution are shown in Figs. 23 and 24 for uniformly distributed and linearly distrib-
uted thermal source, respectively.
7.3. Mechanical sources at t = 0.25

7.3.1. Concentrated force
The variations of normal displacement, normal force stress, and tangential couple stress are similar in nat-

ure to the variations obtained at time t = 0.1, with different magnitude. But it is observed that the difference in
values of normal displacement and tangential couple stress for L–S and G–L theories is more significant than
the values obtained at time t = 0.1. These variations of normal displacement, normal force stress, and tangen-
tial couple stress for time t = 0.25 are shown in Figs. 25–27, respectively.

Similar to the variations obtained at time t = 0.1, the variations of temperature distribution for G–L theory
lie in a short range. But the difference lies in the variations for L–S theory. While the variations of temperature
distribution for both the theories at time t = 0.1 are uniform in nature, this is not the case at time t = 0.25.
These variations of temperature distribution are shown in Fig. 28.
7.3.2. Uniformly distributed force

The variations of all the quantities are similar in nature, with difference in magnitude, to the variations
obtained at time t = 0.1. These variations of normal displacement, normal force stress, tangential cou-
ple stress, and temperature distribution are shown in Figs. 29–32 respectively. Still, it is observed that
the values of normal displacement and normal force stress obtained in this case for the micropolar and clas-
sical theories of thermoelasticity are close to each other as compared to the variations obtained at time
t = 0.1.
7.3.3. Linearly distributed force

The variations of normal displacement and normal force stress for the micropolar theory of thermoelastic-
ity (i.e., MTECC and MTEIS) and the classical theory of thermoelasticity (TECC and TEIS) are similar in
nature separately. However, the variations are more oscillatory for the classical theory of thermoelasticity.
These variations of normal displacement and normal force stress at time t = 0.25 are shown in Figs. 33
and 34 respectively.

It is observed from Fig. 35 that the variations of tangential couple stress for MTECC and MTEIS are sim-
ilar in nature for both L–S and G–L theories separately. The variations of temperature distribution, shown in
Fig. 36, depict that the variations for G–L theory (for both micropolar theory of thermoelasticity and classical
theory of thermoelasticity) lie in a short range and these variations for L–S theory are oscillatory in nature for
the solid.
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7.4. Thermal sources at t = 0.25

7.4.1. Concentrated thermal source

Very similar to the variations of normal displacement, normal force stress, and tangential couple stress
obtained at time t = 0.1, the values of these quantities are very small for G–L theory as compared to the values
for L–S theory. This similarity is closer in the cases of normal force stress and tangential couple stress. These
variations of normal displacement, normal force stress, and tangential couple stress are shown in Figs. 37–39,
respectively. After observing Fig. 40, it can be said about the variations of temperature distribution that the
difference in the values among L–S and G–L theories is very significant at time t = 0.25, whereas at t = 0.1 this
difference is much less.

7.4.2. Uniformly distributed and linearly distributed thermal source
The variations of all the quantities are similar in nature to the variations obtained at time t = 0.1, with dif-

ference in magnitudes of the values. While the variations of normal displacement, normal force stress, tangen-
tial couple stress, and temperature distribution for uniformly distributed thermal sources are shown in Figs.
41–44, the variations of these quantities for linearly distributed thermal sources are shown in Figs. 45–48,
respectively.

8. Conclusions

The properties of a body depend largely on the direction of symmetry. A significant micropolarity effect is
observed on all the quantities. When concentrated force is applied on the surface of a solid, the variations of
normal displacement and normal force stress for the micropolar theory of thermoelasticity are less oscillatory,
than for the classical theory of thermoelasticity, while in the case of temperature distribution the variations are
opposite in nature for the two theories. The variations of all the quantities for L–S and G–L theories are quite
close to each other. Also the variations of tangential couple stress for concentrated force, uniformly distrib-
uted force, and linearly distributed force are similar in nature. On application of thermal source on the bound-
ary, the difference between the values of normal displacement, normal force stress, and tangential couple stress
for L–S and G–L theories are very significant.
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